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In this research we address the problem of routing information across
dynamic temporal sensor networks. The goal is to determine which in-
formation, generated by sensors on resources at various times, is able to
be routed to other resources, consumer resources, within the given infor-
mation time window, while being constrained by temporally dynamic
bandwidth limitations across the sensor network, and storage limitations
on the resources. A mathematical model of the problem is derived, and
used to find solutions to the problem. In addition, a heuristic is developed
to efficiently find good quality solutions. Monte-Carlo simulations are
performed comparing solutions found by commercial software with the
heuristic.

1 Introduction

This paper is an extension of work originally presented
at the Military Communications Conference [1]. Wire-
less sensor networks are a class of networks in which
some or all of the sensors or resources collect, ana-
lyze, and communicate data acquired from their en-
vironment (external or internal) to other nodes in the
network [2]. These other nodes could be resources,
sensors, or fixed or mobile command posts. Mobile ad-
hoc networks (MANETs) are a subset of wireless sensor
networks that have an absence of a fixed infrastruc-
ture, and exhibit a dynamic communication topology
[3]. Resources within transmission range of others
communicate directly (depending on bandwidth limi-
tations) and cooperation among intermediate resources
is required for resources to communicate with others
outside of their direct communication range. More and
more networks, in both the military and commercial
domain, are relying on wireless sensor networks and
MANETs [4, 5, 6].

The ability for data to be collected by manned and
unmanned vehicles engaged in military, government,
and commercial missions is increasing at an exponen-
tial rate [7]. Examples include high-resolution video,
telephone intercepts, traffic congestion reports, inter-
nal vehicle system states, among others. In commer-
cial telecommunication networks, there are instances
where the capacity across the network is in the ter-

abytes per second range [8]. Networks of this type have
the ability to transmit all data that is collected with-
out restrictions or delays. However, in times of crisis
and disaster, commercial and civil communication net-
works can be severely degraded [9, 10]. And in military
missions, bandwidth is oftentimes severely limited,
which results in a reduction in transmission and shar-
ing of information that can be mission-critical. And
this will continue to be the case due to the rise of op-
erations performed in anti-access/area denial (A2AD)
environments, against near-peer adversaries. In the
past, this meant that information collected by vehicles
would not be processed, analyzed, and understood un-
til after the vehicle had returned to base and ‘uploaded’
all of the collections [7, 11].

In performing more of the processing and analysis
on-board the vehicles, there has the potential for less
bandwidth requirements for vehicles to share informa-
tion important for mission success. In effect, this can
be seen as pushing the smarts out to the tactical edge.
Each generation of manned and unmanned vehicles
is having more and more processing capabilities on-
board [11]. Examples include internally monitoring
on-board systems, fusing information collected from
various on-board sensors, picking out a person of inter-
est from a full motion video, and deciding how much
information should be sent over the sensor network
and to whom should be the recipient of such informa-
tion [12]. While some of the collected information can
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just be generated and stored on a vehicle, and offloaded
upon mission completion, other generated information
is vital to mission success, and must be transmitted
to control station(s) or other resources during mission
execution.

To address this, we consider the following problem.
There are a set of resources (moving or fixed) that have
a set of Information Generation Requests (IGRs) to sat-
isfy over a given time horizon. If a resource executes
a task to perform the IGR, then an associated piece of
information is generated. We will use the term IGR
to denote the information that gets generated. Each
IGR can come from one of a fixed set of categories (for
an example of information categories, see Table 1). In
addition, each IGR has associated with it the following
characteristics: an expected time of generation, the
set of consumer resources (those resources that would
find this information important for their mission), the
time by which the information needs to be delivered
to the to be of use, the expected original size of the
information, and the priority of the information (i.e.,
a measure of its importance in the mission). We note
that the priority of an IGR could be determined a priori
(e.g., information collected about one kinematic loca-
tion is deemed very important and therefore is given
a high priority) or dynamically on-board the resource
at the time of collection, if the resource has the ap-
propriate analytics (e.g., image is given low priority
because it does not contain any red cars). By a ‘con-
sumer resource’ for a particular IGR, we mean that the
resource actually performs some processing with that
information (e.g., fuses that information with other
information [13, 14], makes command and control de-
cisions, etc.).

There is a dynamic sensor network topology in
place over the time horizon. This dynamic network
has finite, but varying bandwidth limitations between
any two resources at any given time, and in many cases
there might not be a direct connection between two
resources. Each IGR can be sent over the network with
different potential granularities (e.g., 100% of original
size, 70% of original size, etc.), but there is a minimum
size percentage with which the information remains
useful to the consumer of the information. As an IGR
gets routed from the generating resource to the con-
sumer resource, all resources along this route will need
to store this IGR locally for some amount of time. The
generating resource will need to store an IGR from
the time of generation until the IGR is completely sent
to the next resource in the path to the consumer re-
source(s). Non-consumer resources along this path will
need to store the IGR from the time the resource begins
receiving the IGR until the time the resource has com-
pletely transmitted the IGR to the next resource along
the path. And the consumer resource(s) will need to
store the IGR form the time they begin receiving it
until at least they have finished processing the IGR.

Each resource has a finite storage capacity, and re-
sources can triage information they have stored (e.g.,
once a piece of information is generated and com-
pletely sent to the next resource along the path to the

consumer, the generator resource can delete the infor-
mation from storage). The objective is then to deter-
mine which IGRs to route over the network, how to
route those IGRs so that they have a minimal time de-
lay (difference between time of consumption and time
of generation), from generating resource to consumer
resource over the time horizon, while also attempt-
ing to maximize the size of granularity of each IGR
that is routed. In turn, this produces the higher-level
end product of determining which IGRs should be ac-
complished for mission objectives, given the network
topology characteristics.

There has been some prior research into routing
schemes for collected data across a dynamic network.
In [17], the author considered the problem of sinkholes
in a network. A sinkhole node attempts to deceive all
the nodes in the network to route network traffic to
the sinkhole, by broadcasting false routing informa-
tion across the network. An approach based upon
secondary caching was developed to prevent a sink-
hole attack in dynamic source routing sensor networks.
In [18], the author consider cellular data networks
and the significant increase in data being transmitted
over these networks. Their research looked at data
traffic management techniques, whereby users and au-
tomated approaches ‘flag’ messages that are of low
priority, and an higher-level agent-based scheduling
system had the ability to delay scheduling of low pri-
ority messages during peak load times. In [19], the
authors considered the problem of extending lifetimes
of wireless sensor networks. In their view, the sending
of redundant data across sensor networks reduced the
lifetime of these networks. They looked at providing
certain nodes in the network to function as ‘data ag-
gregation’ nodes, receiving collected data from other
nodes in the network, fusing or aggregating the data to-
gether to reduce redundant information, and then pass-
ing this reduced set of data onwards to a base station.
They employed a grid-based routing and aggregator
selection scheme to find the minimum number of ag-
gregation points while routing data to the base station
ensuring that the network lifetime is maximized.

In addition, there has been some prior research
addressing certain aspects of our problem of interest,
but none that has addressed the problem completely.
In [20], the author considered the problem of routing
information across a network, from a workflow per-
spective, but the network was assumed to be complete
and static, and bandwidth was not addressed. In [21],
the researchers extended this work to include band-
width limitations, but still under the assumption on a
complete and static network. In [22], the researchers
presented a mixed-integer linear programming formu-
lation to model the trajectory of a set of unmanned
aerial vehicles, along with routing of information col-
lected from these vehicles back to a base station. They
did not consider bandwidth fluctuations in the sensor
network, and the resources were not the recipient of
any information, just the base station. In addition, all
of their information was considered to have the same
priority. In [23], the author considered underwater
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Table 1: Examples of Information Categories.
Category Example
Internal System State Measurements on the engine pressure ratio [15]
External Collection Photographs of an urban traffic intersection
Situation Assessments High likelihood that red truck contains person of interest
Command and Control (C2) Modifying flight plan to conserve battery life [16]

acoustic networks and the long propagation delays
and low bandwidths inherent in such networks. A
set of nodes was using the same bandwidth channel,
and because their problem had bursty data, the so-
lution approach looked at submitting their requests
randomly, as demand dictated. A medium access con-
trol protocol was in place to minimize the number of
collisions among the information flowing across the
network. In [24], the researchers investigated ways to
enhance the operations of a power grid. One of the
ways, taking advantage of the high sampling rates of
the measurement data, required a high bandwidth, net-
worked communication system. Their results derived
a method to simulate, design, and test the adequacy of
a communication system for a particular grid layout.

The rest of this paper is organized as follows. In Sec-
tion 2, we introduce the parameters and decision vari-
ables for our model, and rigorously derive the mathe-
matical program representing our problem. Section 3
develops a heuristic to efficiently find good quality so-
lutions. Section 4 analyzes the results of computational
experiments performed on various scenarios, compar-
ing commercial software solving a linearized version
of the mathematical program and the solutions found
by the heuristic. Section 5 provides some concluding
remarks and future research directions.

2 Mathematical Formulation

In this section, we rigorously derive mathematical
equations to model the problem of interest. This re-
sults in a mixed-integer nonlinear program (MINLP).
We note that the time dimension in the model is dis-
cretized, over the planning horizon of K time-steps.

2.1 Parameters

This section lists the parameters for the mathematical
programming problem.

I is the set of resources, i, i1, i2,∈ I ;

J is the number of Information Generation Re-
quests (IGR)s, j ∈ {1, . . . ,J };

K is the number of time-steps in the planning
horizon, k, k̂ ∈ {1, . . . ,K};

Pmin is the minimum percentage an IGR can be
decreased in size and still be considered useful
to consumer resource(s);

τi,j is the number of time-steps after a consumer
receives an IGR before the consumer can delete

the IGR, i.e., the number of time-steps it takes
resource i (the consumer resource) to ‘process’
IGR j;

ρj is the expected priority of IGR j;

Soj is the expected original size of IGR j;

gj is the expected time of generation of IGR j;

dj is the time by which IGR j is due to the con-
sumer resource(s) of the IGR;

Gi,j =

1 if resource i is tasked with generating IGR j

0 o.w.
;

Ci,j =

1 if resource i is a consumer of IGR j

0 o.w.
;

Li is the storage capacity of resource i;

bi1,i2,k is the expected bandwidth capacity from
resource i1 to resource i2 at time-step k;

ρ̄ is the largest expected priority, i.e., ρ̄ =
max
j

[
ρj

]
;

ωd and ωs are the weighting coefficients for the
priority and size components of the objective
function;

M is a large enough constant, used in Constraints
(7).

2.2 Variables

This section lists the decision variables for the mathe-
matical programming problem.

xj =


1 if IGR j is chosen to be routed

from the generating resource to
the consumer resource(s)

0 o.w.

, ∀j;

sj = the size of IGR j sent to the consumer re-
source(s), ∀j;

ai1,i2,j,k = the amount (size) of IGR j sent from
resource i1 to resource i2 during time-step
k, ∀i1, i2(, i1), j,k;

αi1,i2,j,k =


1 if resource i1 sends some of IGR j

to resource i2 during time-step k
0 o.w.

,

∀i1, i2(, i1), j,k;
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mi,j,k = the amount of IGR j being stored on re-
source i at time-step k, ∀i, j,k. N.B.: For consis-
tency of the constraints, mi,j,0 = 0 ∀i, j;

φi1,i2,j =


1 if resource i1 is assigned to send

IGR j to resource i2
0 o.w.

,

∀i1, i2(, i1), j;

βi,j = the amount of time resource i takes in send-
ing IGR j to other resources, i.e., the time be-
tween resource i completely receiving or generat-
ing IGR j to the time where resource i no longer
needs IGR j, ∀i, j;

ti,j,k =


1 if resource i cumulatively receives

(or generates) sj size units of IGR j at
time-step k

0 o.w.

,

∀i, j,k;

Ti,j = the time-step at which resource i com-
pletely receives (or generates) IGR j, ∀i, j;

di,j,k =


1 if resource i deletes IGR j from

storage at time-step k
0 o.w.

,

∀i, j,k;

Di,j = the time-step at which resource i deletes
IGR j from its storage, ∀i, j;

Qi,j = the time at which resource i completely
consumes (or transmits) IGR j, ∀i, j;

ei,j,k =


1 if resource i receives (or generates)

IGR j by time-step k
0 o.w.

,

∀i, j,k.

N.B.: For consistency of the constraints, it is
necessary to set ei,j,0 = 0 ∀i, j. Also, note that
ei,j,k = 1 implies that ei,j,` = 1 for each ` > k and
ei,j,k = 0 implies that ei,j,` = 0 for each ` < k.

2.3 Nonlinear Mathematical Formulation

This section presents the mathematical model of the
problem described in Section 1, resulting in a mixed-
integer nonlinear program (MINLP).

max ωd ·


J∑
j=1

∑
i∈I :
Ci,j=1

(
K+ gj

)
· xj − Ti,j
K


+ωs ·

 J∑
j=1

sj
Soj

 (1)

s.t.
sj ≤ Soj · xj ∀j (2)

sj ≥ Pmin · Soj · xj ∀j (3)∑
j

mi,j,k ≤ Li ∀i,k (4)

mi,j,k =mi,j,k−1 +
∑
i1∈I
ii,i

ai1,i,j,k

− di,j,k · sj + δ
[
gj − k

]
·Gi,j · sj ∀i, j,k (5)

K∑
k=1

αi1,i2,j,k ≤ K · xj ∀i1, i2, j (6)

M·αi1,i2,j,k ≥ ai1,i2,j,k ∀i1, i2, j,k (7)∑
j

ai1,i2,j,k ≤ bi1,i2,k ∀i1, i2, k (8)

gj∑
k=1

ai1,i2,j,k = 0 ∀i1, i2, j (9)

K∑
k=1

ai1,i2,j,k ≤ sj ∀i1, i2, j (10)

ei,j,k >
∑
i1∈I
i1,i

k∑
k̂=1

ai1,i,j,k̂

− sj −
(
1− xj

)
∀k, ∀i, j s.t. Gi,j = 0 (11)

ei,j,k · sj

≤
∑
i1∈I
i1,i

k∑
k̂=1

ai1,i,j,k̂ ∀k, ∀i, j s.t. Gi,j = 0 (12)

ti,j,k ≥ ei,j,k − ei,j,k−1 ∀i, j,k (13)
K∑
k=1

ti,j,k ≤ xj ∀i, j (14)

ti,j,gj = xj ∀i, j s.t. Gi,j = 1 (15)

Ti,j =
K∑
k=1

k · ti,j,k ∀i, j (16)

Ti,j ≤ dj · xj ∀i, j (17)

Qi,j = Ti,j + τi,j · xj ∀i, j s.t. Ci,j = 1 (18)

Qi,j = Ti,j + βi,j ∀i, j s.t. Ci,j = 0 (19)

βi1,j ≥ k ·αi1,i2,j,k − Ti1,j ∀i1, i2, j,k (20)

Di,j > Qi,j −

1−
K∑
k=1

ti,j,k

 ∀i, j (21)
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Di,j =
K∑
k=1

k · di,j,k ∀i, j (22)

K∑
k=1

di,j,k ≤ xj ∀i, j (23)∑
i1∈I
i1,i

φi1,i,j ≤ xj ∀i, j (24)

K∑
k=1

αi1,i2,j,k ≤ K ·φi1,i2,j ∀i1, i2, j (25)

K∑
k=1

αi1,i2,j,k ≥ φi1,i2,j ∀i1, i2, j (26)

∑
i2∈I
i2,i

αi,i2,j,k ≤
k−1∑
k̂=1

ti,j,k̂ ∀i, j,k (27)

sj =
K∑
k=1

∑
i1∈I
i1,cj

ai1,cj ,j,k ∀j (28)

K∑
k=1

∑
i2∈I

αcj ,i2,j,k = 0 ∀j (29)

xj ,αi1,i2,j,k ,φi1,i2,j , ti,j,k ,di,j,k , ei,j,k ∈ {0,1}
∀i, i1, i2, j,k (30)

sj , ai1,i2,j,k ,mi,j,k ∈
[
0,Soj

]
∀i, i1, i2, j,k (31)

βi,j ,Di,j ,Ti,j ,Qi,j ∈ [0,K]∩Z ∀i, j,k (32)

2.4 Interpretation of Nonlinear Mathe-
matical Formulation

In this section, we explain the objective function and
each of the constraints that are part of the mathemati-
cal formulation.

• The objective function, Equation (1), is a
weighted combination of the time delay and size
of the IGRs routed across the network.

The first term in the objective function deals with
the time delay of those IGRs chosen to be routed.
The sum is over all IGRs j and all resources i
that are consumers of IGR j (i.e., those resources
such that the parameter Ci,j = 1). When an IGR
j is not chosen to be routed, xj is set to be 0 and
Ti,j also ends up as 0, so this term is 0. When
an IGR is chosen to be routed, xj is set to be 1
and Ti,j is set to be the time at which resource
i completely receives IGR j. The time IGR j is
generated is given by the parameter gj . The max-
imum value of this term is 1, which occurs when
Ti,j = gj (which is an idealistic situation), while

the minimum value of this term is
K+gj−dj
K , which

can be 0 when gj is 0 and dj is K.

The second term of the objective function deals
with the size of the IGRs chosen to be routed,

looking at the ratio of the actual size of the IGR
that gets routed versus the original size.

Note that that scale of these two terms are the
same, i.e., they are both within [0,1], and are
unit-less. The first term is weighted by ωd , while
the second term is weighted by ωs.

• Constraints (2) force sj to be less than or equal to
Soj if IGR j is chosen to be routed, and 0 if IGR j
is not chosen to be routed;

• Constraints (3) require sj to be greater than or
equal to the minimal amount to be routed for
IGR j (Pmin · Soj ), if IGR j is chosen to be routed;

• Constraints (4) ensure that at each time-step,
the storage capacity for each resource is not ex-
ceeded;

• Constraints (5) determine the amount of IGR
j stored on resource i at time k as the amount
stored at time k − 1 plus the amount sent to re-
source i at time-step k minus sj if IGR j is deleted
from resource i’s storage at time-step k, plus sj if
IGR j is chosen to be routed by resource i and is
generated at time-step k. N.B.: The Dirac-Delta
impulse function δ [q] returns 1 when q = 0 and
returns 0 otherwise [25];

• Constraints (6) only allow αi1,i2,j,k to be greater
than 0 if IGR j is chosen to be routed;

• Constraints (7) force ai1,i2,j,k to be 0 if resource i1
is not sending IGR j to resource i2 at time-step k;

• Constraints (8) limit the amount of information
traveling from resource i1 to i2 at time-step k to
be no more that the capacity of this edge, bi1,i2,k ;

• Constraints (9) enforce that no resource can send
IGR j before it is generated;

• Constraints (10) enforce that resource i1 send no
more than sj of IGR j to resource i2;

• For those resources that do not generate IGR j
and IGR j is chosen to be routed, Constraints
(11) force ei,j,k to be 1 if all sj of IGR j reaches re-
source i at or before time-step k. This constraint
allows ei,j,k to be 0 or 1 otherwise;

• For those resources that do not generate IGR j,
Constraints (12) force ei,j,k to be 0 while not all sj
of IGR j has reached resource i. This constraint
allows ei,j,k to be 0 or 1 otherwise;

• Constraints (13) set ti,j,k to be 1 at the time-step
that resource i receives all sj of IGR j, and to be
0 for all other time-steps;

• Constraints (14) enforce that resource i can re-
ceive IGR j at most once;

• Constraints (15) set ti,j,k equal to 1 if IGR j is
chosen to be routed, is generated by resource i,
and k is the time of generation of IGR j;
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• Constraints (16) set Ti,j to be the time at which
resource i receives IGR j;

• Constraints (17) enforce that any resource that re-
ceives IGR j, must do so before its due date/time,
if IGR j is chosen to be routed;

• Constraints (18) define the time at which re-
source i has completely ‘processed’ IGR j, if re-
source i is a consumer of IGR j and IGR j is
chosen to be routed;

• Constraints (19) define the time at which re-
source i has completely transmitted IGR j to
other resources, if resource i is not a consumer
of IGR j and IGR j is chosen to be routed;

• Constraints (20) determine the amount of time it
takes resource i to send IGR j to other resources,
once resource i receives or generates IGR j;

• Constraints (21) ensure that if IGR j is chosen
to be routed, that IGR j cannot be deleted from
resource i until resource i is finished with the
IGR;

• Constraints (22) determine the time at which re-
source i deletes IGR j;

• Constraints (23) ensure that resource i can delete
IGR j at most once;

• Constraints (24) enforce that at most one re-
source is assigned to send IGR j to resource i;

• Constraints (25) only allow resource i1 to send
IGR j to resource i2 if it is assigned to;

• Constraints (26) force i1 to send IGR j to resource
i2 during at least one time-step, if i1 is assigned
to send IGR j to resource i2;

• Constraints (27) does not allow resource i to send
any portion of IGR j at time-step k if resource i
has not completely received (or generated) IGR j
by time-step k − 1;

• Constraints (28) ensure that the consumer re-
source(s) of IGR j receives all sj units, if IGR j is
chosen to be routed;

• Constraints (29) prohibit resource cj (the con-
sumer of IGR j) from sending IGR j to other
resources;

• Constraints (30) – (32) are domain restriction
constraints on the decision variables.

3 Solution Methodologies

The formulation derived in Section 2.3 is a nonlinear
mixed-integer programming problem. However, this
formulation can be linearized through standard tech-
niques from operations research [26], resulting in a

mixed-integer linear program (MILP). As such, in the-
ory the MILP formulation could be solved using a num-
ber of commercial software packages (e.g., CPLEX [27],
LINDO [28], etc.). It can be shown that this optimization
problem is NP-Hard, as a variant of the vehicle rout-
ing problem with split deliveries and time windows
[29, 30, 31], which necessitate heuristic strategies for
finding good-quality solutions efficiently [32, 33] when
the problem instances are of sufficient size.

The heuristic developed is split into two phases,
an Information Routing phase, and a Storage Manage-
ment phase. The Information Routing phase attempts
to route all of the IGRs, from generating resource to
consuming resource(s), without consideration of stor-
age limitations on the individual resources. The only
constraints taken into account in the Information Rout-
ing phase are the bandwidth limitations across the
sensor network. The Storage Management phase of the
heuristic then factors in the storage limitations of each
resource to reduce the solution to one that is feasible.

Figures 2 and 1 provide pseudo-code for the In-
formation Routing and Storage Management phases,
respectively. The Information Routing function is in-
put the set of IGRs (and all information about the
IGRs), the initial allocation of bandwidth across the
network over time (InitCommBW), the minimum per-
centage (in size) an IGR is able to be reduced and still
be useful (MinSizePercent), and the ratio by which to
reduce the size of the IGR in sending over the network,
if needed (GranularityRatio). Lines 1 to 5 initialize
internal variables. Lines 6 to 32 get executed while
there are still IGRs on the list to be routed. For each
IGR still on the CurListIGRs list, lines 7 to 25 attempt
to determine a route for the IGR that allows for at least
the minimum size for the IGR to be routed. Line 8 com-
putes the size of the current IGR and line 9 computes
the minimal allowable size of the IGR to be routed.
While a feasible route for the current IGR has not been
found, and the current size of the IGR is larger then
the minimum allowable size, lines 11 to 19 get exe-
cuted. Line 11 calls the function ComputeRoute, given
the current size of the IGR and the current allocation
of bandwidth across the network. Returned from this
function are the route for this IGR from generating
resource to consumer resource, as well as the time the
IGR will completely reach the consumer resource. If
the time by which the consumer completely receives
the IGR is less than the due date of the IGR, then a
potential route for this IGR is found, and the potential
time delay for this IGR is computed. Otherwise, the
size of the IGR is reduced by the granularity ratio. If a
potential route is not found in lines 11 to 19, then this
IGR is moved to the NotRoutedIGRs list and removed
from the current list of IGRs (lines 21 and 22). Line 23
also sets this IGR to have a delay time of +∞. After
the code in lines 7 to 25 is completed, the heuristic
greedily selects the IGR with the current minimal po-
tential delay time (line 26). This IGR is removed from
the list of current IGRs, and added to the list of routed
IGRs. The potential route computed for this IGR is
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procedure Storage Management(ResourceList, RoutedIGRs, NotRoutedIGRs, MaxStorageSize)
1 CurrentRL← ResourceList;
2 while CurrentRL , ∅ do
3 CurR← Choose (CurrentRL);
4 CurrentRL← CurrentRL \CurR;
5 for k = 0 to K do
6 for each IGR` completely transited through CurR by time-step k do
7 CurR← RemoveFromStorage (CurR, IGR` , k,K);
8 end for;
9 for each IGR` completely consumed by CurR by time-step k do
10 CurR← RemoveFromStorage (CurR, IGR` , k,K);
11 end for;
12 if Storage (CurR, k) >MaxStorage then
13 for each IGR` generated by CurR and completely transited by time-step k do
14 CurR← RemoveFromStorage (CurR, IGR` , k,K);
15 end for;
16 end if;
17 ListIGRs← GetIGRs (CurR, k);
18 SortIGRs← Sort (ListIGRs);
19 while Storage (CurR, k) >MaxStorage do
20 IGR` ← Choose (SortIGRs);
21 RemoveFromRouting (IGR`);
22 NotRoutedIGRs←NotRoutedIGRs∪ {IGR`};
23 RoutedIGRs← RoutedIGRs \ {IGR`};
24 end while;
25 end for;
26 end while;
27 return(RoutedIGRs,NotRoutedIGRs);
end Storage Management;

Figure 1: Pseudo-code for the Storage Management phase of the heuristic.

Table 2: Categories, and values used for the number of resources and density over the numerical experiments.

Category N Density
Extra Small 3

Small 4,5,6 1,0.67,0.33
Medium 8,10,12

Large 15,20,25

saved into the set IGRRoutes in line 29, and the cur-
rent bandwidth allocation across the temporal network
is updated (due to this IGR having its route finalized)
in line 30. This process in lines 6 through 32 continues
until the set CurListIGRs is empty. The output from
the Information Routing function is the set of IGRs
that have been routed (along with all of the necessary
details of the routes), as well as the set of IGRs not able
to be routed.

The Storage Management function takes as input
the list of resources, the list of routed IGRs, the list of
IGRs that are not able to be routed, and the maximum
storage size for each resource. While not all of the
resources have been considered, lines 2 through 26 are
executed. Line 3 chooses a resource from those still
to be considered. Lines 5 to 25 get executed for each
time-step of the time horizon. In lines 6 to 8, each
IGR that has completely transited through the current
resource by the time-step under consideration, gets re-
moved from the resources’ storage, from the time-step
under consideration to the end of the time horizon.
In lines 9 to 11, each IGR that has been completely
consumed by the current resource, by the time-step
under consideration, gets removed from the resources’

storage, from the time-step under consideration to the
end of the time horizon. Now, if the storage for the
current resource at the time-step under consideration
is above the capacity, in lines 13 to 15 each IGR that
was generated by the current resource and has been
completely transited through the current resource (i.e.,
completely sent to the next resource along the path to
the consumer resource) by the time-step under consid-
eration gets removed from the resources’ storage, from
the time-step under consideration to the end of the
time horizon. Up to this point, all IGRs that were to be
routed (as determined from the Information Routing
function) are still valid. Line 17 gets the list of IGRs
that are scheduled to be generated by the current re-
source no later than the time-step under consideration,
and line 18 sorts this list. While the storage for the
current resource at the time-step under consideration
is above the maximum allowed, an IGR from the sorted
IGR list is chosen, and it is removed from routing. This
continues until the storage constraints are met for the
current resource at the time-step under consideration.
Output from the Storage Management function is an
updated list of IGRs chosen to be routed and IGRs not
able to be routed.
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procedure Information Routing(IGRs, InitCommBW, MinSizePercent, GranularityRatio)
1 CurListIGRs← IGRs;
2 CurCommBW← InitCommBW;
3 RoutedIGRs←∅;
4 NotRoutedIGRs←∅;
5 IGRRoutes←∅;
6 while CurListIGRs , ∅ do
7 for IGRj ∈ CurListIGRs do
8 CurSize← Size

(
IGRj

)
;

9 MinSize←MinSizePercent ·CurSize;
10 FoundRoute← false;
11 while CurSize >MinSize And FoundRoute = false do
12

[
RouteIGRj ,ConsumeTimej

]
← ComputeRoute

(
IGRj ,CurSize,CurCommBW

)
;

13 if ConsumeTimej < DueTime
(
IGRj

)
then

14 FoundRoute← true;
15 DelayTimej ← ConsumeTimej − gj ;
16 else
17 CurSize←GranularityRatio ·CurSize;
18 end if;
19 end while;
20 if FoundRoute = false then
21 NotRoutedIGRs←NotRoutedIGRs∪ {IGRj };
22 CurListIGRs← CurListIGRs \ {IGRj };
23 DelayTimej ← +∞;
24 end if;
25 end for;
26 j? ← ArgMin (DelayTime);
27 CurListIGRs← CurListIGRs \ {IGRj? };
28 RoutedIGRs← RoutedIGRs∪ {IGRj? };
29 IGRRoutes← IGRRoutes∪ {RouteIGRj? };
30 CurCommBW← Update

(
CurCommBW,RouteIGRj?

)
;

31 end while;
32 return(RoutedIGRs,NotRoutedIGRs);
end Information Routing;

Figure 2: Pseudo-code for the Information Routing phase of the heuristic.

4 Computational Experiments

4.1 Test Environment

Java jdk 1.8.0 25 was used to code up the heuristic, the
actual exact MILP, and the generation of scenario data.
CPLEX Optimization Studio V12.6.3 [27] was called to
solve the exact MILP. Matlab R2011b (7.13.0.564)

[34] was used to generate combinations of input pa-
rameters, as well as to analyze the results of all ex-
periments. All experiments were conducted on a Dell
Precision Tower 7810 with an Intel(R) Xeon(R) CPU
E5-2630 v3 @2.40GHz 2.40 GHz with 32.0 GB memory.

4.2 Experimental Results

The aim of our experiments were to investigate the so-
lution quality found by the heuristic, as compared with
commercial software, as well as to determine how close
to optimal were the solutions found by the heuristic.
We used the commercial software CPLEX [27] to solve
the linearized formulation of the mathematical model
presented in Section 2. However, as can be seen from
the results that follow, for some of the scenarios CPLEX
was not able to find solutions significantly close to op-
timal, within the time-limits to find a solution. Thus,
we also ran CPLEX to solve the linearized formula-
tion, providing CPLEX an initial solution found from

running the heuristic. These two sets of experiments
involving CPLEX are described as ‘‘CPLEX w/o Init.
Soln.’’ and ‘‘CPLEX w/ Init. Soln.’’, respectively. To
test the heuristic, as well as CPLEX, we created numer-
ous scenarios, varying the number of resources (N) and
the density of the underlying communication network
topology, as displayed in Table 2.

The maximum density of the underlying commu-
nication network topology is given by Equation (33),
where N is the set of nodes, or resources, of the net-
work and E is the set of communication links, or edges,
between nodes of the network. So, a maximum density
of 0.8 means that 20% of the edges have been deleted
from the complete network. We note that deleting
these edges has the same effect as enforcing that those
edges have a maximum bandwidth of 0 over the time-
horizon. Also it is important to point out that this
gives the maximum density of the network over any
given time. In actuality, based on temporal bandwidth
parameters defined (‘Bandwidth per Directed Edge per
Resource’ in Table 3), there exist the potential for two
nodes to have 0 available direct bandwidth at a given
time-step, even though this edge was not explicitly re-
moved from the network. This can be seen as modeling
the possibility for a node to be kinematically out of
range of another, and hence not able to communicate,
or for a node to be operating in ‘radio silence’ at that
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Table 3: Parameter categories and values used for the numerical experiments. For those parameters with only
a minimum value, that is the fixed value for the parameter. For those parameters that have a minimum and
maximum value, the distribution listed is the probability distribution through which a specific parameter is
determined, via a random draw.

Parameter Min. Value Max. Value Dist.
Number Time-Steps 20
Bandwidth per Directed Edge 0 100 Uniform
per Resource
Number of IGRs in Scenario 5 10 Uniform
per Resource
Time Delay Between IGR 7 20 Uniform
Generation and Consumption
Resources that Neither Generate d0.2 ·N e
nor Consume IGRs
IGR Size 25 250 Uniform
Storage Capacity 750 1500 Uniform
per Resource
Granularity Ratio 0.9
MinSizePercent 0.8

Table 4: Solution quality analysis, according to Equation (34), for the mathematical formulation using CPLEX,
without and with an initial input solution.

CPLEX w/o Init. Soln. CPLEX w/ Init. Soln.
Num. % Time Opt. Mean % Time Feasible % Time Opt. Mean

Resources Density Soln. Found Soln. GAP Soln. Not Found Soln. Found Soln. GAP
3 1 80 0.0012 0 80 0.0012
3 0.67 100 0 100
3 0.33 100 0 100
4 1 100 0 100
4 0.67 90 0.0013 0 90 0.0012
4 0.33 90 0.0001 0 90 0.0001
5 1 80 0.0002 0 90 0.0001
5 0.67 60 0.0029 0 50 0.0027
5 0.33 70 0.0006 0 70 0.0006
6 1 60 0.0207 0 50 0.0035
6 0.67 60 0.0022 0 70 0.0093
6 0.33 100 0 100
8 1 0 0.0343 0 0 0.0133
8 0.67 0 0.0775 0 10 0.0368
8 0.33 20 0.0109 0 20 0.0115

10 1 0 0.1149 0 0 0.0274
10 0.67 0 0.1031 0 0 0.0240
10 0.33 0 0.0636 0 0 0.0890
12 1 0 0.2145 0 0 0.0390
12 0.67 0 0.1308 0 0 0.0349
12 0.33 0 0.3658 0 0 0.2128
15 1 0 0.4977 0 0 0.0678
15 0.67 0 0.2130 0 0 0.0637
15 0.33 0 0.4390 10 0 0.1810
20 1 0 0.9583 90 0 0.2988
20 0.67 0 0.6205 30 0 0.1122
20 0.33 0 0.2709 10 0 0.2507
25 1 0 1.0000 100 0 0.2614
25 0.67 0 1.0000 100 0 0.3739
25 0.33 0 0.3702 10 0 0.2155

time-step, due to external environmental conditions
(e.g., weather, topography, etc). In addition, this can

model a node failure [35, 36, 37] if a particular node
has 0 available bandwidth at a given time over all edges
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Table 5: Average normalized distance, computed according to Equation (35), between the heuristic and CPLEX
with/without the initial solution, for those cases where CPLEX found at least a feasible solution. Note: An entry
is left blank whenever CPLEX was not able to find a feasible solution for any of the scenarios.

Num. CPLEX w/out CPLEX w/
Resources Density Init Soln Init Soln

3 1 -0.132 -0.132
3 0.67 -0.127 -0.127
3 0.33 -0.115 -0.115
4 1 -0.072 -0.072
4 0.67 -0.174 -0.174
4 0.33 -0.330 -0.330
5 1 -0.098 -0.098
5 0.67 -0.194 -0.194
5 0.33 -0.212 -0.212
6 1 -0.071 -0.089
6 0.67 -0.151 -0.145
6 0.33 -0.481 -0.481
8 1 -0.064 -0.085
8 0.67 -0.079 -0.128
8 0.33 -0.400 -0.400

10 1 0.024 -0.071
10 0.67 -0.013 -0.120
10 0.33 -0.281 -0.254
12 1 0.158 -0.066
12 0.67 0.070 -0.100
12 0.33 0.300 -0.102
15 1 0.779 -0.051
15 0.67 0.090 -0.086
15 0.33 0.491 -0.114
20 1 1.186 -0.037
20 0.67 0.536 -0.066
20 0.33 -0.068 -0.108
25 1 -0.035
25 0.67 -0.036
25 0.33 0.109 -0.104

connecting it to other nodes.

Density =
|E|

|N | · (|N | − 1)
(33)

For each combination of number of resources and
density, 10 Monte-Carlo scenarios were created ran-
domly. For each scenario generated, the remaining pa-
rameters were derived from the information in Table 3,
and then kept fixed for the scenario. In addition, the
coefficients of the two terms in the objective function
(time-delay and size), ωd and ωs, were fixed to 0.7 and
0.3 for all scenarios. Each approach (‘‘CPLEX w/o Init.
Soln.’’, ‘‘CPLEX w/ Init. Soln.’’, and the heuristic) were
given 900 seconds to solve each scenario instance. For
those cases where CPLEX did not solve the problem
to optimality within the 900 seconds, the best solution
found by CPLEX is considered. We note that there
are cases in the tables to follow where CPLEX was not
able to find even a feasible solution by the time-limit,
hinting at the limitations of commercial software as
the size of the problems get large.

Table 4 examines the results just from the exact
approach, using CPLEX (without and with an initial

solution). For each combination of number of resources
and communication network density, columns 3–5 deal
with the solution found by CPLEX without an initial
solution, while columns 6–7 are concerned with the
solution found by CPLEX with an initial solution pro-
vided. Columns 3 and 6 show that as the problem size
gets larger, CPLEX has a more difficult time in finding
the optimal solution. And for most of the problem
sizes, in terms of providing an optimal solution, there
is no difference between CPLEX without or with an
initial solution. Column 5 shows the percentage of
times CPLEX without an initial solution is unable to
find a feasible solution to the problem. There is al-
ways the trivial feasible solution where no IGRs are
routed, so CPLEX unable to find a feasible solution
means that CPLEX ran out of memory in the creation
of the mathematical model. Again this is as expected;
as the problems get larger, more variables and con-
straints are needed, and eventually memory issues are
encountered. Columns 4 and 7 show the mean gap
between the upper bound on the solution value com-
puted in CPLEX and the best solution found by CPLEX.
For each scenario, this gap is computed as in Equation
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Table 6: Mean Time Delay between generation and consumption of IGRs chosen to be routed, for each solution
approach. For those cases where CPLEX is not able to find a feasible solution within the time-limit for any
scenarios, the entry is left blank. The results are shown as mean:standard deviation.

Num. CPLEX w/out Heuristic CPLEX w/
Resources Density Init Soln Init Soln

3 1 8.956:0.758 5.070:1.120 8.937:0.738
3 0.67 9.691:1.387 4.968:0.897 9.658:1.389
3 0.33 10.223:0.993 4.651:0.722 10.194:0.960
4 1 9.268:0.954 4.105:0.335 9.278:0.952
4 0.67 9.867:0.734 5.059:0.680 9.856:0.697
4 0.33 10.096:1.153 6.036:1.208 10.128:1.168
5 1 9.004:0.676 3.773:0.327 9.030:0.663
5 0.67 9.762:0.779 5.073:0.433 9.735:0.756
5 0.33 9.588:1.137 5.321:0.700 9.595:1.128
6 1 9.300:0.571 4.021:0.296 9.270:0.582
6 0.67 9.502:0.988 5.257:0.345 9.571:0.953
6 0.33 9.925:1.093 6.361:0.861 9.944:1.050
8 1 9.201:0.700 4.016:0.247 9.186:0.639
8 0.67 9.233:0.558 4.704:0.340 9.426:0.830
8 0.33 10.047:0.665 6.433:0.560 10.099:0.667

10 1 9.010:0.560 3.807:0.321 9.248:0.613
10 0.67 8.504:0.580 4.517:0.316 8.788:0.658
10 0.33 9.460:0.457 6.117:0.519 9.928:0.984
12 1 8.632:0.482 3.846:0.234 9.242:0.494
12 0.67 8.950:0.458 4.684:0.313 9.324:0.497
12 0.33 9.362:0.603 6.194:0.334 11.301:0.979
15 1 7.573:0.398 3.820:0.122 9.599:0.288
15 0.67 8.590:0.698 4.411:0.204 9.197:0.570
15 0.33 9.449:1.149 5.924:0.569 11.035:0.874
20 1 7.633:0.000 3.688:0.148 9.692:0.348
20 0.67 7.586:0.312 4.376:0.068 9.961:0.541
20 0.33 8.684:0.512 5.866:0.269 10.534:1.066
25 1 3.721:0.096 9.629:0.312
25 0.67 4.366:0.211 10.469:0.287
25 0.33 8.471:0.424 5.537:0.139 10.359:1.046

(34), where ub is the upper bound on the solution value
and sf is the solution found by CPLEX. We note that
when CPLEX finds the optimal solution, ub = sf and
the GAP is therefore 0, and when CPLEX is not able
to find even a feasible solution, we assigned the trivial
solution of sf = 0 (the worst feasible solution for the
model), resulting in a GAP value of 1.

GAP =
ub − sf
ub

(34)

What is apparent from Columns 4 and 7 of Table 4
is that CPLEX with an initial solution performs better
most of the time as compared to CPLEX without an
initial solution. In most cases, there is a significant
decrease in the mean gap. However, there are a few
cases that are counter-intuitive. Specifically when the
number of resources is 6, 8, or 10 and the densities
are 0.67, 0.33, or 0.33 respectively. For these three
combinations, CPLEX without an initial solution has
a smaller mean gap than does CPLEX with an initial
solution. This is because there was one scenario in
each of these combinations where the heuristic found

a solution not close to the optimal, and CPLEX had a
difficult time given the heuristic solution as the initial
solution, i.e., the heuristic found a local maximum, and
CPLEX had a difficult time finding a solution better
than this local maximum.

Table 5 shows the average normalized distances be-
tween the heuristic solutions and the CPLEX solutions
without and with the initial solution. Each normal-
ized distance is computed according to Equation (35),
where {xhj , s

h
j } is the solution found by the heuristic,

{xcj , s
c
j } is the solution to the linearized formulation us-

ing CPLEX, and f is the objective function. Since we
have a maximization problem, values of Equation (35)
larger than 0 indicate that the heuristic is finding a
better solution than is CPLEX, while those less than 0
indicate an heuristic solution worse than that found
by CPLEX. First off, as expected, all of the values in
the last column of Table 5 are negative, because the
worst solution ‘CPLEX with initial solution’ can find is
the same solution as found by the heuristic since this
is the solution provided as input to CPLEX. For less
than 12 resources, CPLEX without an initial solution
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Table 7: Average runtime (in seconds) for each solution approach to find a solution. For those cases where
CPLEX is not able to find a feasible solution within the time-limit, the returned time by CPLEX is still used in
this computation.

Num. CPLEX w/out Heuristic CPLEX w/
Resources Density Init Soln Init Soln

3 1 218.705 0.002 224.092
3 0.67 48.794 0.000 132.075
3 0.33 10.150 0.000 12.552
4 1 22.205 0.003 30.301
4 0.67 179.300 0.000 190.852
4 0.33 123.936 0.001 155.227
5 1 388.937 0.000 337.506
5 0.67 433.410 0.002 498.094
5 0.33 465.390 0.001 444.524
6 1 469.135 0.002 634.885
6 0.67 595.497 0.002 502.483
6 0.33 109.626 0.000 161.185
8 1 901.857 0.008 901.757
8 0.67 901.863 0.006 865.321
8 0.33 822.245 0.005 761.825

10 1 904.283 0.006 903.338
10 0.67 905.129 0.005 905.198
10 0.33 903.219 0.002 903.443
12 1 904.817 0.011 905.141
12 0.67 905.752 0.003 906.519
12 0.33 905.980 0.003 904.835
15 1 910.124 0.044 910.081
15 0.67 1310.217 0.005 1071.725
15 0.33 1161.690 0.005 1124.190
20 1 2872.113 0.083 2066.906
20 0.67 1283.765 0.009 994.237
20 0.33 958.069 0.005 1153.269
25 1 4612.964 0.128 2845.093
25 0.67 6458.231 0.006 6317.989
25 0.33 1672.833 0.006 1980.635

is also able to find a better solution on average than
is the heuristic. However, after this point, for almost
all cases the heuristic is finding a better solution than
is CPLEX without an initial solution. Again, this is to
be expected, because as the size of the problem grows,
commercial software will have more difficulty in solv-
ing the larger problems and the heuristic will begin to
find better solutions. But in comparing the heuristic
with CPLEX with an initial solution, the average nor-
malized distance between solutions is never that large
on average, showing that the heuristic is able to find
a good-quality solution as compared with commercial
software.

f
(
xhj , s

h
j

)
− f

(
xcj , s

c
j

)
f
(
xcj , s

c
j

) (35)

Table 6 presents, for those IGRs chosen to be routed,
the mean time delay between IGR generation and IGR
consumption. Column 3 of Table 6 shows the mean
delay for the CPLEX solution when no initial solution
is provided, Column 4 shows the mean delay for the

heuristic solution, while Column 5 shows the mean
delay for the CPLEX solution when an initial solu-
tion is provided. As is clear from this table, for those
IGRs routed, the heuristic is able to route them much
quicker than is CPLEX. This is regardless of the size of
the problem. The rationale for this is that the heuristic
is choosing IGRs to route in a greedy way, while CPLEX
considers the routing of all IGRs simultanously.

Table 7 presents the average runtime for each of
the approaches, in seconds. As is clear, the developed
heuristic is quite fast in finding solutions for all of the
scenario classes. It is also clear that the heuristic takes
longer to run on average when the communication net-
work topology is dense as opposed to sparse. Both of
the CPLEX approaches take much longer than does
the heuristic. Even when the number of resources is
as small as 8, these approaches reach (or almost reach)
the time limit of 900 seconds. Hence, to get sightly
better solutions (according to the objective function)
CPLEX needs much more time than does the heuristic.
We note that while CPLEX was given a time limit of
900 seconds, there were cases where CPLEX does take
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longer to complete. This is due to CPLEX not being
able to ‘halt’ processing exactly when the time limit is
reached.

5 Conclusions and Future Re-
search

In this research, we have examined the problem of rout-
ing information amongst a set of resources, when there
exists a dynamic communication network topology
with limited, time-varying, bandwidth, over a given
time horizon. A rigorous mathematical formulation
was developed to model the problem, with the objec-
tive being to minimize the time delay of the informa-
tion that can be routed while at the same time max-
imizing the size of the information routed. This for-
mulation is nonlinear, but a linearized version can be
derived through standard techniques of operations re-
search. As the problem is NP-hard, a heuristic has been
developed to efficiently find good-quality solutions.
Numerous Monte-Carlo simulations were performed
on problems with varied resources and communica-
tion network topology density. As can be seen in the
results, for smaller sized problems commercial soft-
ware is able to find a better solution on average than
is the heuristic. And when the commercial software
uses as input the solution found by the heuristic, even
better results are obtained. As the size of the prob-
lem increases, however, the heuristic begins finding
much better solutions compared with the commercial
software. And even when the commercial software is
provided the heuristic solution as input, the commer-
cial software is not able to improves significantly on
this solution. Looking at the metric of the actual time-
delay for those IGRs chosen to be routed, it is clear that
the heuristic is better able to route those chosen IGRs.
When coupled with the time needed for the heuristic
to find a good quality solution versus the commercial
software, it is clear that the heuristic is outperforming
the commercial software.

Future research includes looking at specific net-
work topology structures from realistic military and
civil applications, considering the related problem of
finding the minimum network temporal connectivity
necessary to ensure certain information is able to be
routed within time bounds, as well as considering the
problem from a decentralized control paradigm, when
no resource has knowledge about the network as a
whole, but rather must consider only local network
knowledge and make independent routing decision. In
addition, incorporating the concept of network packet
errors will provide added complexity and realism to
the problem and scenarios considered.

Conflict of Interest The authors declare no conflict
of interest.

Acknowledgment This research was Supported by
Office of Naval Research Project N00014-15-C-5163.

References
[1] M. J. Hirsch, A. Sadeghnejad, and H. Ortiz-Pena, “Shortest

paths for routing information over temporally dynamic com-
munication networks,” in Proceedings of the IEEE Military
Communications Conference, pp. 587–591, 2017.

[2] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci,
“Wireless sensor networks: A survey,” Computer Networks,
vol. 38, pp. 393–422, 2002.

[3] J. Al-Karaki, , and A. Kamal, “Efficient virtual-backbone rout-
ing in mobile ad hoc networks,” in Elsevier Computer Networks,
vol. 52, pp. 327–350, 2008.

[4] E. Huang, W. Hu, J. Crowcroft, and I. Wassell, “Towards com-
mercial mobile ad hoc network applications: a radio dispatch
system,” 6th ACM International Symposium on Mobile Ad Hoc
Networking and Computing, pp. 355–365, 2005.

[5] “Army 18.1 Small Business Innovation Research (SBIR) Pro-
posal Topic 025: An Adaptively Covert, High Capacity RF
Communications / Control Link,” tech. rep., 2018.

[6] “Air Force 18.1 Small Business Innovation Research (SBIR)
Proposal Topic 019: Novel Battle Damage Assessment Using
Snesor Networks,” tech. rep., 2018.

[7] C. Howard, “UAV command, control, and communication,”
Military and Aerospace Electronics, vol. 24, 2013.

[8] B. Vignac, F. Vanderbeck, and B. Jaumard, “Reformulation
and decomposition approached for traffic routing in optical
networks,” Networks, vol. 67, pp. 277–298, 2016.

[9] J. Brodkin, “Tropical storm Harvey takes out 911 centers, cell
towers, and cable networks,” ars Technica, August 28 2017.

[10] L. K. Comfort and T. W. Haase, “Communication, choerence,
and collective action: The impage of Hurrican Katrina on the
communication infrastructure,” Public Works Management &
Policy, vol. 11, no. 1, pp. 1–16, 2006.

[11] U.S. Air Force, “USAF Strategic Master Plan,” tech. rep., 2015.

[12] “Air Force 17.1 Small Business Innovation Research (SBIR)
Proposal Topic 047: Resilient Communication for Contested
Autonomous Manned/Unmanned Teaming,” tech. rep., 2017.

[13] D. L. Hall and J. Llinas, “An introduction to multisensor data
fusion,” in Proceedings of the IEEE, vol. 85-1, pp. 6–23, 1997.

[14] E. Bosse, J. Roy, and S. Wark, eds., Concepts, Models, and Tools
for Information Fusion. Artech House, 2007.

[15] F. A. A. U.S. Department of Transportation, “Aviation Main-
tenance Technician Handbook – Airframe, Volume 2,” tech.
rep., 2012.

[16] “Navy 17.A Small Business Technology Transfer (STTR) Pro-
posal Topic T029: Multi-Vehicle Collaboration with Minimal
Communication and Minimal Energy,” tech. rep., 2017.

[17] I. Jebadurai, E. Rajsingh, and G. Paulraj, “Enhanced dynamic
source routing protocol for detection and prevention of sink-
hole attack in mobile ad hoc networks,” International Journal
of Network Science, vol. 1, pp. 63–79, 2016.

[18] U. Paul, M. Buddhikot, and S. Das, “Opportunistic traffic
scheduling in cellular data networks,” IEEE International Sym-
posium on Dynamic Spectrum Access Networks, pp. 339–349,
2012.

[19] J. Al-Karaki, R. Ul-Mustafa, and A. Kamal, “Data aggrega-
tion and routing in wireless sensor networks: Optimal and
heuristic algorithms,” in Elsevier Computer Networks, vol. 53,
pp. 945–960, 2009.

[20] M. J. Hirsch, H. Ortiz-Pena, R. Nagi, A. Stotz, and M. Sudit,
“On the optimization of information workflow,” in Dynamics
of Information Systems: Mathematical Foundations (A. Sorokin,
R. Murphey, M. Thai, and P. Pardalos, eds.), vol. 20, pp. 43–65,
Springer, 2012.

www.astesj.com 339

http://www.astesj.com


M.J. Hirsch et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 4, 327-340 (2018)

[21] M. J. Hirsch and H. Ortiz-Pena, “Information supply chain
optimization with bandwidth limitations,” International Trans-
actions in Operational Research, vol. 24, no. 5, pp. 993–1022,
2017.

[22] E. Grotli and T. Johansen, “Path and data transmission plan-
ning for cooperating uavs in delay tolerant network,” in Globe-
com Workshop, pp. 1568–1573, IEEE, 2012.

[23] S. Basagni, C. Petrioli, R. Petroccia, and M. Stojanovic, “Opti-
mizing network performance through packet fragmentation in
multi-hop underwater communications,” in OCEANS, pp. 1–7,
IEEE, 2010.

[24] P. Kansal and A. Bose, “Bandwidth and latency requirements
for smart transmission grid applications,” IEEE Transactions
on Smart Grid, vol. 3, pp. 1344–1352, 2012.

[25] M. Greenberg, Advanced Engineering Mathematics. Pearson,
2nd ed., 1998.

[26] L. Wolsey, Integer Programming. Wiley, 1998.

[27] I. CPLEX, “http://www-01.ibm.com/software/commerce
/optimization/cplex-optimizer/,” Accessed January 2017.

[28] LINDO, “http://www.lindo.com/,” Accessed July 2016.

[29] J. Lenstra and A. R. Kan, “Complexity of vehicle and schedul-
ing problems,” Networks, vol. 11, pp. 221–227, 1981.

[30] M. Solomon and J. Desrosiers, “Time window constrained rout-
ing and scheduling problem,” Transportation Science, vol. 22,
pp. 1–13, 1988.

[31] M. Dror and P. Trudeau, “Split delivery routing,” Naval Re-
search Logistics, vol. 37, pp. 383–402, 1990.

[32] G. Ausiello, M. Protasi, A. Marchetti-Spaccamela, G. Gam-
bosi, P. Crescenzi, and V. Kann, Complexity and Approximation:
Combinatorial Optimization Problems and Their Approximability
Properties. Springer-Verlag New York, Inc., 1st ed., 1999.

[33] M. R. Garey and D. S. Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completeness. New York, NY, USA:
W. H. Freeman & Co., 1979.

[34] Matlab, “http://www.mathworks.com/products/matlab/,”
Accessed January 2017.

[35] B. Szymanski, X. Lin, A. Asztalos, and S. Sreenivasan, “Failure
dynamics of the global risk network,” Scientific Reports, vol. 5,
pp. 1–14, 2015.

[36] R. Liu, M. Li, and C. Jia, “Cascading failures in coupled net-
works: The critical role of node-coupling strength across net-
works,” Scientific Reports, vol. 6, pp. 1–6, 2016.

[37] K. Kim, J. Jin, and S. Jin, “Classification between failed nodes
and left nodes in mobile asset tracking systems,” Sensors,
vol. 16, pp. 1–18, 2016.

www.astesj.com 340

http://www.astesj.com

	Introduction
	Mathematical Formulation
	Parameters
	Variables
	Nonlinear Mathematical Formulation
	Interpretation of Nonlinear Mathematical Formulation

	Solution Methodologies
	Computational Experiments
	Test Environment
	Experimental Results

	Conclusions and Future Research

